En un entorno dominado por datos no estructurados, procesos altamente automatizables y la necesidad de personalización en tiempo real, el Deep Learning ha emergido como una de las tecnologías más poderosas dentro del campo de la Inteligencia Artificial. Desde el reconocimiento de imágenes y voz, hasta el procesamiento del lenguaje natural y la generación de contenido, los modelos de aprendizaje profundo están redefiniendo lo que es posible en múltiples sectores como la salud, la industria, la banca o el comercio electrónico.
El reto actual no es solo entender los conceptos detrás de las redes neuronales profundas, sino también saber cómo aplicarlos eficazmente a problemas reales con herramientas y marcos de trabajo que garanticen resultados escalables. Profundizar en arquitecturas como CNNs, RNNs y transformers no solo permite automatizar tareas complejas, sino también descubrir patrones y generar predicciones con un nivel de precisión sin precedentes.
Cada uno de los módulos de este curso ha sido elaborado rigurosamente atendiendo a las necesidades actuales y futuras tanto de los profesionales como de las empresas.
¡Explora todas las materias que conforman este curso!
Algoritmos de descenso del gradiente, funciones de pérdida y técnicas de entrenamiento eficientes.
Aplicaciones en visión por computador, estructuras de redes y mejores prácticas de implementación.
Modelado de secuencias, LSTM y GRU, y aplicaciones en series temporales y texto.
Introducción a modelos como BERT y GPT; aplicaciones en lenguaje natural y procesamiento contextual.
Dropout, batch normalization, early stopping y tuning de hiperparámetros.
Dropout, batch normalization, early stopping y tuning de hiperparámetros.
Uso de modelos preentrenados y adaptación a nuevas tareas con conjuntos de datos reducidos.
Métricas de rendimiento, visualización de resultados y mejores prácticas para la toma de decisiones basada en modelos.
Este curso proporciona una formación técnica, aplicada y progresiva en redes neuronales profundas, cubriendo desde los principios fundamentales hasta arquitecturas modernas utilizadas en entornos de producción. Se abordarán temas clave como el entrenamiento y evaluación de modelos, técnicas de regularización, ajuste fino (fine-tuning), y transferencia de conocimiento mediante Transfer Learning.
A través del uso de frameworks líderes como TensorFlow y PyTorch, los participantes desarrollarán la capacidad de construir, entrenar e interpretar modelos avanzados en distintos contextos de negocio. El curso incluye sesiones prácticas, estudios de caso y actividades guiadas con datasets reales.
Dirigido a profesionales de ciencia de datos, ingenieros de machine learning, desarrolladores y perfiles técnicos que busquen profundizar en el ámbito del aprendizaje automático avanzado y su aplicación práctica.